

Universidad Austral de Chile

Facultad de Ciencias de la Ingeniería Escuela Ingeniería Mecánica

"ANÁLISIS MODAL DE DISCOS Y DISCOS DENTADOS MEDIANTE EL SOFTWARE PRO/ENGINEER."

Tesis para optar al Título de: Ingeniero Mecánico.

> Profesor Patrocinante: Sr. Rolando Ríos Rodríguez. M.Sc. Ingeniería Mecánica.

MARIO ALEXANDER PAZ FERNÁNDEZ. VALDIVIA-CHILE 2006 El Profesor Patrocinante y Profesores Informantes de Trabajo de Titulación comunican al Director de Escuela de Mecánica de la Facultad de Ciencias de la Ingeniería que el Trabajo de Titulación del señor:

MARIO ALEXANDER PAZ FERNÁNDEZ.

Ha sido aprobado en el examen de defensa rendido el día....., como requisito para optar al Título de Ingeniero Mecánico. Y, para así conste para todos los efectos firman:

Profesor Patrocinante:

Rolando Ríos Rodríguez M.Sc. Ingeniería Mecánica

Profesores Informantes:

Héctor Noriega Fernández D. Sc. Ing. Producción.

Roberto Cárdenas Parra. Ingeniero Mecánico.

Director de Escuela:

Dr. Sr. Rogelio Moreno M.

.....

.....

.....

.....

En este momento tan especial para mí, quiero dedicar de manera muy especial este trabajo A mis queridos y amados padres Rita Fernández F. y Mario Paz R. Por su apoyo y confianza incondicional.

Gracias.

Agradecimientos.

Quiero dar gracias a todas aquellas personas que de una u otra manera ayudaron a la realización de esta tesis.

En especial, quiero agradecer a don Rolando Ríos R. quien me brindo la oportunidad de realizar esta tesis y me ofreció todo su apoyo, tiempo y amistad

De igual forma, quiero agradecer a don Héctor Noriega F. por toda su comprensión y apoyo en la realización de esta tesis y sobre todo por brindarme su amistad durante todos estos años.

Como así también agradecer de manera especial a don Roberto Cárdena P. por ofrecerme el apoyo necesario durante la realización de esta tesis como así también durante mis años de estudios.

Muchas Gracias.

<u>ÍNDICE</u>

RESU	MEN	Pág.	1
SUMN	IARY	Pág.	2
CAPÍ	Γυμο Ι		
	INTRODUCCIÓN	Pág.	3
1.1	OBJETIVO GENERAL	Pág.	4
1.2	OBJETIVOS ESPECÍFICOS	Pág.	4
1.3	MÉTODO DE TRABAJO	Pág.	4
CAPÍ	Γυίο ΙΙ		
	MARCO TEÓRICO – CONCEPTUAL	Pág.	5
2.1	VIBRACIONES MECÁNICAS	Pág.	5
2.2	CARACTERÍSTICAS DE UN		
	SISTEMA VIBRATORIO	Pág.	5
2.3	DEFINICIONES BÁSICAS	Pág.	6
2.4.	GRADOS DE LIBERTAD	Pág.	10
2.4.1	Vibraciones libres en sistemas		
	de un grado de libertad	Pág.	11
2.5	FACTORES DE AMPLIFICACIÓN DINÁMICA	Pág.	14
2.6	RESONANCIA MECÁNICA	Pág.	15
2.7	DISCOS GIRATORIOS	Pág.	16
2.7.1	Discos estacionarios	Pág.	18
CAPÍ	Γυμο ΙΙΙ		
3.1	MÉTODO DE ELEMENTOS FINITOS	Pág.	20
3.1.1	Análisis estático	Pág.	20
3.1.2.	Análisis dinámico	Pág.	20
3.2	TIPOS DE ELEMENTOS DEL MEF	Pág.	20

3.2.1	Elemento cáscara	Pág.	20
3.2.2	Elementos sólidos	Pág.	21
3.3	ETAPAS DE LA MODELACION	Pág.	24
3.4	ANALISIS MODAL	Pág.	27
CAPÍ	TULO IV		
4.1	MODOS DE VIBRACIONES	Pág.	29
4.1.1	1º Caso de estudio, disco normal	Pág.	29
4.1.2	2º Caso de estudio, Disco con ¼ de		
	periferia dentada	Pág.	31
4.1.3	3º Caso de estudio, Disco con ½		
	periferia dentada	Pág.	34
4.1.4	4º Caso de estudio, Disco con ¾		
	periferia dentada	Pág.	36
4.1.5	Tabla Resumen	Pág.	38
4.1.6	Resultados Gráficos	Pág.	41
4.2	ANÁLISIS DE ESFUERZOS		
	EN CONDICIONES DINÁMICAS	Pág.	49
4.2.1	Caso de estudio, Disco sin dientes		
	Velocidad 600 rpm	Pág.	49
	Velocidad 840 rpm	Pág.	51
	Velocidad 1080 rpm	Pág.	52
4.2.2	Disco con ¼ de periferia dentada.		
	Velocidad 600 rpm	Pág.	53
	Velocidad 840 rpm	Pág.	55
	Velocidad 1080 rpm	Pág.	56
4.2.3	Disco con ½ periferia dentada		
	Velocidad 600 rpm	Pág.	57
	Velocidad 840 rpm	Pág.	59
	Velocidad 1080 rpm	Pág.	60
4.2.4	Disco con ¾ de periferia dentada.		

	Velocidad 600 rpm	Pág.	62
	Velocidad 840 rpm	Pág.	63
	Velocidad 1080 rpm	Pág.	64
4.2.5	Tabla Resumen	Pág.	65

CAPÍTULO IV

CONCLUSIONES	Pág.	74
BIBLIOGRAFÍA	Pág.	77
ANEXO	Pág.	79

ÍNDICE DE ANEXO

ANE	(0	Pág.
1	MECÁNICA DE LA MADERA	 79.

RESUMEN

En este trabajo de titulación se presenta un análisis de vibraciones en discos y discos dentados, utilizando el software Pro/Engineer basado en el método de elementos finitos, en el cual se generan mallas automáticas con elementos sólidos: brick, wedge y tetra.

Los discos se modelan bajo las siguientes condiciones de borde: 1) empotrado en el centro mediante collarines de diámetro exterior "*d*"; 2) libre en el borde del disco de diámetro exterior "*D*". El análisis se realiza para diferentes relaciones de diámetros $d_D' = 0.1$; 0.2; 0.3 y 0.4, en discos sin dientes como también para discos dentados bajo tres condiciones, es decir, con ¼ de periferia dentada, ½ periferia dentada y ¾ periferia dentada.

Los objetivos de este trabajo consisten básicamente, para discos estacionarios, en determinar los modos de vibrar, frecuencias naturales y desplazamientos a lo largo de la periferia. Para discos giratorios, las frecuencias de vibración y esfuerzos dinámicos para tres velocidades: 600, 840 y 1080 rpm.

Las principales conclusiones que se destacan son: 1) que las frecuencias naturales aumentan a medida que se varía las condiciones de dentado, 2) las frecuencias de vibración correspondiente al modo 1 no presentan grandes cambios para las velocidades de 600, 840 y 1080 rpm , como así también ocurre lo mismo para los modos 2, 3 y 4, respectivamente, 3) para todos los casos señalados, tanto las frecuencias naturales como también las frecuencias de vibración aumentan linealmente a medida que se va incrementando la relación d'_D para todos los modos.

SUMMARY

In this work of title an analysis of vibrations in disks and serrated disks is presented, using the software Pro/Engineer based on the method of finite elements, in which automatic nettings with solid elements are generated: brick, wedge and tetra.

The disks are shaped under the following conditions of edge: 1) built-in in the center by means of collars of exterior diameter "*d*"; 2) free in the edge of the disk of exterior diameter "*D*". The analysis is carried out for different diameters relations $\frac{d}{D} = 0.1$; 0.2; 0.3 and 0.4, in disks without teeth as also for serrated disks under three conditions, that is, with ¼ of serrated periphery, ½ serrated periphery and ¾ serrated periphery.

The objectives of this work consist basically, for stationary disks, in determining the ways of vibrating, natural frequencies and displacements along the periphery. For revolving disks, the frequencies of vibration and dynamic efforts for three velocities: 600, 840 and 1080 rpm.

The main conclusions that are emphasized are: 1) that the natural frequencies enlarge as the serrated conditions themselves vary, 2) the vibration frequencies of corresponding way 1 do not present big changes for the velocities of 600, 840 and 1080 rpm, as thus also the same thing occurs for the ways 2, 3 and 4, respectively, 3) for all the indicated cases, so much the natural frequencies as also the vibration frequencies enlarge lineally for all of the ways as the relation

 $\frac{d}{D}$ increases.

CAPITULO I

INTRODUCCIÓN.

Con el pasar del tiempo el hombre ha tratado de dar explicaciones a fenómenos naturales; por tal motivo la búsqueda para dar soluciones a estas interrogantes lo ha llevado a usar variados métodos científicos en los cuales se plantean ideas, hipótesis y modelos matemáticos para luego validarlos experimentalmente.

En este contexto, las vibraciones mecánicas han despertado siempre curiosidad por lo complejo de su comportamiento, existiendo a la fecha innumerable literatura tanto en el campo teórico como experimental.

Hay muchas formas de definir lo que son las vibraciones mecánicas. La definición mas usada por la literatura es la siguiente: son movimientos oscilantes que provocan el desequilibrio con respecto a su posición de reposo de un cuerpo. Este cuerpo puede ser una estructura, una máquina o como en el caso de esta tesis el comportamiento de un disco sin dientes y discos dentados.

Para tales efectos, las hipótesis que se considerarán para la solución del problema son:

- Que el software Pro/Engineer, sustentado en el método de elementos finitos y usando la mayor aproximación posible, permitirá el modelamiento adecuado del problema.
- 2. Tanto los disco sin dientes como los discos dentados se considerarán como discos finos.

El análisis de las vibraciones de los diferentes discos que comprende el análisis modal, tanto estático como dinámico, se realiza mediante el software Pro/Engineer y el módulo Pro/Mecánica, basados en el método de elementos finitos.

1.1 OBJETIVO GENERAL.

Estudiar el comportamiento modal y los esfuerzos de discos sin dientes y discos dentados giratorios mediante el software Pro/Engineer.

1.2 OBJETIVOS ESPECÍFICOS

Los objetivos específicos de este trabajo son la determinación de:

- 1. Los modos de vibrar y sus respectivas frecuencias naturales.
- 2. Desplazamientos a lo largo de la periferia en los distintos tipos de discos.
- 3. Frecuencias de vibraciones para diferentes velocidades de rotación.
- 4. Esfuerzos dinámicos en un disco sin dientes y en discos dentados.

1.3 MÉTODO DE TRABAJO.

- Se realizaron los estudios dinámicos y de vibración mecánica, con el apoyo de distintos textos existentes en biblioteca, como también el uso de Internet, tesis e información que fue relevante para tal estudio.
- 2. Para realizar un buen uso del Pro/Engineer, fue necesario el aprendizaje del software mediante información existente en Internet y libros de apoyo
- Uso del módulo Pro-Mechanica, el cual permite modelar elementos en 3D, para así poder observar los resultados de cambio de velocidad, aceleración angular, fuerza, entre otras.

CAPÍTULO II

MARCO TEÓRICO – CONCEPTUAL.

2.1 VIBRACIONES MECÁNICAS.

El estudio de las vibraciones mecánicas también llamado, mecánica de las vibraciones, es una rama de la mecánica, que estudia los movimientos oscilatorios de los cuerpos, y de las fuerzas asociadas con ella, se debe tener presente que tanto los términos de movimiento, oscilación y vibración no son sinónimos entre si ya que toda vibración es una oscilación y toda oscilación es un movimiento, pero lo ya señalado no se puede presentar en sentido inverso.

Tanto las oscilaciones como las vibraciones se propagan en el tiempo mediante un proceso de cambios entre los distintos tipos de energía, pero la diferencia radica en que la oscilación es un intercambio de energía tanto cinemática como energía potencial gravitacional, a diferencia de las vibraciones mecánicas en las cuales se encuentra presente la energía de deformación o la energía potencial elástica.

2.2 CARACTERÍSTICAS DE UN SISTEMA VIBRATORIO.

En general un sistema que experimenta vibraciones posee cuatro características básicas:

- Una masa que experimenta un movimiento oscilatorio.
- Una fuerza restauradora que tiende a regresar la masa a su posición de equilibrio.
- Una fuerza excitadora que varía con el tiempo y mantiene o propaga la vibración.
- Una fuerza amortiguadora que siempre resiste el movimiento de la masa.

En la Fig. (2.1). se resume lo explicado anteriormente, donde el sistema consiste de una masa "M" que experimenta un movimiento periódico, un resorte ideal de masa insignificante que ejerce una fuerza restauradora siempre que la masa es desplazada de la posición de equilibrio, una fuerza

excitadora f(t) que es función del tiempo que mantiene la vibración y un amortiguador que siempre se opondrá a la fuerza de movimiento de la masa.

Fig. 2.1. Sistema masa, resorte y amortiguador.

2.3 DEFINICIONES BÁSICAS.

Según algunos autores, vibraciones mecánicas se pueden definir de la siguiente forma:

- Es el movimiento de vaivén que ejercen las partículas de un cuerpo debido a la excitación. (Vibración).
- Es el movimiento de vaivén de las moléculas de un cuerpo o sistema debido a que posee características energéticas cinemáticas y potenciales. (vibración mecánica)
- Es toda variación en el tiempo, de una magnitud que describe el movimiento o la posición de un sistema mecánico, cuando esta magnitud es alternativamente mayor o menor que cierto valor promedio o de referencia. (según ISO 2041).

Para poder comprender el fenómeno de vibración se debe tener claro algunos conceptos los cuales se definirán a continuación:

• Movimiento vibratorio armónico simple.

Es un movimiento que por lo general es rectilíneo basado en oscilaciones o vibraciones periódicas en donde la aceleración es proporcional a la posición o desplazamiento pero en sentido contrario a ella.

• Amplitud de onda.

Es el valor máximo que puede alcanzar la partícula con respecto a la posición de equilibrio.

• Periodo. "T"

Es el tiempo necesario para que ocurra una oscilación o se complete un ciclo. Generalmente está dada en minutos o segundos.

• Frecuencia. "f"

Es el número de oscilaciones realizadas en un segundo, que se mide generalmente en Hz.

• Movimiento Ondulatorio.

Es el movimiento que describe la onda. Una onda es una transmisión de energía o perturbaciones las cuales se subdividen en dos: ondas estacionarias y ondas viajeras ya sea progresiva o regresiva y estas a su vez pueden ser longitudinales (La dirección de vibración de las partículas coincide con la dirección de propagación de la onda) o transversal (La dirección de la vibración de las partículas alcanzadas por la onda es perpendicular a la dirección de propagación de la onda) y según las dimensiones se pueden clasificar en ondas unidimensionales, bidimensionales, tridimensionales.

- Velocidad de Fase o Propagación.
 Es la velocidad a la que se propaga una onda determinada, la cual depende de sus propiedades ya sea el medio, si es homogénea e isótropo.
- Vibraciones libres.

Es la que tiene lugar en ausencia de fuerzas externas y solo se encuentran presentes bajos las condiciones iniciales de desplazamiento y velocidad.

- Vibraciones Forzadas.
 Vibración que tiene lugar debido a la presencia de fuerzas externas que varían con el tiempo.
- Frecuencia Natural o Frecuencias Propias. (ω)
 Para sistemas de un grado de libertad, es la frecuencia del movimiento armónico que resulta al introducir un desplazamiento o una velocidad inicial, que se encuentre en posición de equilibrio y se deja vibrar libremente sin ningún tipo de amortiguador.
 En sistemas de N grados de libertad cada modo natural de vibración tendrá una frecuencia natural asociada la cual será la del

vibración tendrá una frecuencia natural asociada, la cual será la del movimiento armónico resultante.

• Frecuencia de excitación. $(\overline{\omega})$

Es la frecuencia asociada a una acción exterior actuante sobre el sistema mecánico y que varía armónicamente. Si ω es la frecuencia natural del sistema y $\overline{\omega}$ la de excitación, la relación entre ambas

frecuencias se representará mediante β , es decir $\beta = \frac{\omega}{\omega}$. Para el caso particular en que ambas frecuencias coincidan, es decir $\beta=1$, se considera que el sistema se encuentra en resonancia.

• Vibración Armónica.

Constituye la forma mas simple de oscilación se caracteriza por ser representada por una onda senoidal, por lo general, se genera en sistemas lineales debido a la presencia de algún problema potencial, llámese algún tipo de desbalance, el cual se estudia a través de un vector rotatorio con velocidad angular constante, Fig. (2.2)

Fig. 2.2. Vibración armónica.

• Vibración Periódica.

Es un movimiento que se repite de igual forma en intervalos de tiempo, Fig. (2.3), un ejemplo claro de este tipo de vibración se presenta cuando existen problemas de funcionamiento en una transmisión dentada

Fig. 2.3. Vibraciones periódicas.

• Vibración aleatoria.

Ocurre en forma errática y tiene contenidos de frecuencias en toda la banda de frecuencias analizada. Esto quiere decir que la vibraciones aleatorias producirán un espectro continuo o dicho de otra forma el espectro estará constituido por infinitas vibraciones armónicas, en la cual

cada una estará caracterizada por una amplitud, frecuencia y fase respectivamente. Fig. (2.4).

Fig. 2.4. Vibración aleatoria.

Según las definiciones ya expuestas se puede señalar que las vibraciones mecánicas se pueden dividir según su naturaleza de excitación en vibraciones libres y vibraciones forzadas y según su naturaleza de la respuesta las vibraciones pueden ser armónicas, periódicas o aleatorias.

2.4. GRADOS DE LIBERTAD.

Se llaman grados de libertad de un sistema mecánico a los parámetros independientes que definen la posición y la configuración desplazada de dicho sistema. En algunos casos los grados de libertad vienen determinados por la propia configuración del sistema, por ejemplo, si el sistema posee masas concentradas, la posición de cada una de las masas son sus grados de libertad Fig. (2.5), o en el caso de estructuras formadas por barras con nudos rígidos o articulados, es habitual tomar los desplazamientos de los nudos como grados de libertad. Fig. (2.6)

Fig. 2.5 Grados de libertad en sistema masa resorte.

Fig. 2.6 Grados de libertad en estructuras.

2.4.1 Vibraciones libres en sistemas con un grado de libertad.

Para poder definir matemáticamente los conceptos se definirá la ecuación de movimiento de un cuerpo con un grado de libertad .En la Fig. (2.7), se muestra el diagrama de fuerzas que intervienen en el movimiento. A partir de la ley de Newton, se encontrará la ecuación diferencial lineal de segundo orden.

Fig. 2.7. Diagrama de fuerzas.

Por tanto, aplicando una fuerza f(t) sobre la masa (M) en dirección positiva del sistema lineal (x), introduciendo la fuerza de inercia y estableciendo el equilibrio de fuerzas en la dirección "x" se llegará a la siguiente ecuación.

$$M \ddot{X}(t) + C \dot{X}(t) + KX(t) = f(t)$$
 [2.1]

Para el caso de vibraciones libres, se asume que no existen fuerzas externas sobre el sistema Fig. (2.7) es decir, f(t) = 0. La solución tiene la forma:

$$x(t) = Ce^{st}$$
[2.2]

La ecuación [2.2] representa una solución para todos los valores representados por "s". Sustituyendo y después derivando la ecuación [2.1] se podrá ahora expresar de la siguiente forma:

$$c(ms^2 + cs + k)e^{st} = 0,$$
 [2.3]

Al sustituir en la ecuación general [2.1], se podrá expresar de la siguiente forma:

$$ms^2 + cs + k = 0$$
 [2.4]

Por lo tanto la solución de "s" es:

$$s = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{k}{m}}$$
[2.5]

Para el caso de vibraciones libres no amortiguadas, la solución se asumirá que $\frac{k}{m}$ es una constante positiva tras lo cual se podrá hacer una igualdad $\omega^2 = \frac{k}{m}$, ahora reemplazado en la ecuación [2.5] se encontraran las soluciones de "s", expresado de la siguiente forma:

$$s = \pm \sqrt{-\omega^2} = \pm \omega i$$
 [2.6]

Para este caso la solución general de la ecuación diferencial está dada por la expresión:

$$x(t) = C_1 e^{i\omega t} + C_2 e^{-i\omega t}$$
[2.7]

En donde C_1 y C_2 representan las constantes que pueden ser reales o imaginarias.

Teniendo en cuenta la relación de igualdad de Euler la expresión será de la forma:

$$e^{\pm i\omega t} = \cos(\omega t) \pm i \operatorname{sen}(\omega t)$$
[2.8]

Por tanto la ecuación general [2.7] se puede expresar de la siguiente forma:

$$x(t) = A\cos(\omega t) + Bsen(\omega t)$$
[2.9]

La ecuación [2.9] podrá representarse como:

$$\mathbf{x}(t) = \mathbf{x}\cos(\omega t - \theta)$$
 [2.10]

Después de sustituir e igualar la ecuación [2.9] y [2.10], la solución general del problema será:

$$X(t) = x_0 \cos(\omega t) + \frac{x_0}{w} \sin(\omega t)$$
[2.11]

La grafica representada en la Fig. (2.8). correspondiente a la solución de una función armónica de frecuencia $\omega = \sqrt{\frac{K}{m}}$, que depende sólo de los parámetros k y m pero no del tiempo ni de las condiciones iniciales, y se le denomina frecuencia natural del sistema.

Fig. 2.8. Representación de la vibración libre.

2.5 FACTORES DE AMPLIFICACIÓN DINÁMICA

Es una medida de la amplitud máxima de la vibración forzada. Específicamente esta mide la amplitud máxima de la vibración forzada relativa al desplazamiento de equilibrio bajo una carga estática equivalente. La ecuación que representa este factor se expresara de la forma polar siguiente:

$$\mathbf{X}(t) = \frac{f_0}{k} \frac{1}{1 - \beta^2 + 2\xi\beta i} e^{i\omega t} = \frac{f_0}{k} \frac{e^{-\phi i}}{\sqrt{(1 - \beta^2)^2 + (2\xi\beta)^2}} e^{i\omega t} = \mathbf{X} e^{i(\omega t - \phi)}$$
[2.12]

En donde:

 $\phi = \operatorname{arctg} \frac{2\xi\beta}{(1-\beta^2)}$ (Desfase presente entre la excitación y la respuesta del

sistema).

$$X = \frac{f_0}{k} \frac{e^{-\phi i}}{\sqrt{(1-\beta^2)^2 + (2\xi\beta)^2}}$$
 (Amplitud de la vibración resultante del sistema).

 $\frac{f_0}{k}$ (Representa el desplazamiento estático y es el desplazamiento que tendría el sistema si la carga fuera aplicada estáticamente)

$$D = \frac{1}{\sqrt{(1-\beta^2)^2 + (2\xi\beta)^2}}$$
 (Factor de amplificación dinámica),

Los valores máximos del factor de amplificación dinámica se obtienen derivando respecto de β e igualando a cero lo cual producirá que el máximo valor para $\beta = \sqrt{1-2\xi^2}$, lo cual será un valor ligeramente inferior a uno y su valor es:

$$D_{\max} = \frac{1}{2\xi_{\sqrt{1-\xi^2}}}.$$
 [2.13]

2.6 RESONANCIA MECÁNICA.

Un sistema está en condiciones de resonancia cuando la frecuencia de excitación ($\overline{\omega}$) coincide con alguna de las frecuencias naturales (ω), es decir, el cuociente entre la frecuencia de excitación y la frecuencia natural del elemento sea igual a 1, para el caso de sistema de un grado de libertad β =1.Fig. (2.9).

Fig. 2.9 Factor de amplificación dinámica.

La característica más importante de la resonancia es que da lugar a grandes desplazamientos, amplificándose las vibraciones, provocando grandes tensiones y deformaciones, pudiendo arrojar fallas en los elementos. Por tal motivo, en el diseño de cualquier mecanismo deben evitarse las condiciones de resonancia, variando algunas de las dos frecuencias. Cabe señalar que las frecuencias de excitación no son variables que se puedan modificar, ya que corresponde generalmente a los requerimientos de funcionamiento del sistema, por ejemplo, la velocidad de rotación de un motor. Por tanto, se haría más fácil controlar las frecuencias naturales, modificando la masa o la rigidez del sistema.

En la práctica, la masa no resulta fácil de modificar, ya que su valor suele venir determinado por los requerimientos del sistema, por ejemplo, la masa del volante de inercia de un eje viene determinada por el valor de la energía que se quiere almacenar en un ciclo. Por ello la rigidez es el parámetro que se modifica habitualmente a la hora de alterar las frecuencias naturales de un sistema mecánico, así por ejemplo la rigidez de un rotor puede modificarse cambiando el número y/o posición de los puntos de apoyo de los cojinetes.

2.7 DISCOS GIRATORIOS.

El comportamiento dinámico de discos giratorios se rige mediante la siguiente ecuación diferencial, cuya solución permite describir el desplazamiento trasversal, bajo las hipótesis que el disco es isótropo, homogéneo y de geometría fina de modo que es aplicable la teoría de Kirchhoff.

$$\frac{D}{h}\nabla^4 w = \rho \frac{\partial^2 w}{\partial t^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \sigma_r \frac{\partial w}{\partial r} \right) + \frac{1}{r^2} \sigma_\theta \frac{\partial^2 w}{\partial \theta^2}$$
[2.14]

En donde:

$$D = \frac{Eh^3}{12(1-\mu^2)}$$
 (Módulo de rigidez a la flexión).

 σ_r y σ_{θ} : (tensiones radiales y tangenciales respectivamente).

h : (Espesor del disco).

 ρ : (Densidad del material).

r, θ : (Coordenadas polares).

 ∇^4 : (Operador biarmónico).

Para el caso de un disco rotatorio, la solución particular puede ser escrita de la siguiente forma:

$$w(r,t) = W(r)\cos(n\Omega t)\cos(w_{sn}t)$$
[2.15]

Donde:

W(r): (Función dependiente del radio r).

n: (Número de nodos diametrales).

 Ω : (Velocidad de rotación).

 w_{sn} : (Frecuencia correspondiente al modo definido por el nodo circular *s* y el nodo diametral *n*).

t: (Tiempo).

Al juntar términos semejantes de la ecuación [2.15] se puede rescribir de la siguiente forma:

$$w(r,t) = W(r)\cos(n\Omega t \pm w_{sn})t$$
[2.16]

De la ecuación [2.16] se deduce que si pudiera fijar hipotéticamente en el espacio el desplazamiento transversal entonces podría ser interpretado mediante dos señales, la primera a la frecuencia ($n\Omega + w_{sn}$) y la segunda a una frecuencia corresponde a ($n\Omega - w_{sn}$),lo cual representa dos ondas viajeras, una onda viajera progresiva (p) y una onda viajera regresiva (r) respectivamente, las frecuencias anteriormente señaladas se pueden representar mediante la siguiente formula:

$$w_f(p,r) = w_n \pm n\Omega$$
[2.17]

Donde:

 $w_f(p)$: (Frecuencia de resonancia de la onda progresiva)

 $w_f(r)$: (Frecuencia de resonancia de la onda regresiva)

 w_n : (Frecuencia natural)

Por tanto una forma de determinar los modos de vibrar de una sierra es a partir de la frecuencia natural, afectada por la fuerza centrifuga, la cual está representada mediante la siguiente ecuación:

$$f_c = \frac{w_f(p) + w_f(r)}{2}$$
[2.18]

Donde:

 f_c : (Frecuencia natural influenciada por la fuerza centrifuga).

El numero de los diámetro nodales esta representado por:

$$n = \frac{f_c - w_f(r)}{f_r}$$
[2.19]

Donde:

 f_r : (Frecuencia de rotación del disco en Hz).

Por tanto reemplazando la ecuación [2.18] en [2.19] se obtiene que:

$$n = \frac{w_f(p) - w_f(r)}{2f_r}$$
[2.20]

De lo anterior se deduce que la frecuencia natural para un disco rotatorio está dado por:

$$w_{sn} = \frac{\lambda}{2\pi \left(\frac{\rho a^4}{E h_1^2}\right)^{\frac{1}{2}}}$$
[2.21]

Donde:

 h_1 : (Espesor de la placa).

 λ : (Parámetro adimensional de la frecuencia natural).

E : (Módulo de Young).

a: (Radio exterior del disco).

 ρ : (Densidad del material).

2.7.1 Discos estacionarios.

La ecuación diferencial que permite determinar el desplazamiento transversal de un disco estacionario, se deduce de la ecuación [2.14] en la cual se elimina los términos relacionados con la rotación, por tanto la ecuación quedará representada de la siguiente forma:

$$\frac{D}{h}\nabla^4 w + \rho \frac{\partial^2 w}{\partial^2} = 0$$
[2.22]

Donde:

$$D = \frac{Eh^3}{12(1-v^2)}$$

El operador biarmónico (∇^4) se puede expresar también como $(\nabla^2 \nabla^2)$ que representa un operador Laplaciano y que en coordenadas polares tiene la siguiente forma:

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}$$
[2.23]

Asumiendo que el disco se encuentra bajo vibración libre, tiene una solución del tipo:

$$w = W(r)\cos(\overline{w}t)$$
[2.24]

Donde:

w: (Desplazamiento trasversal).

 $W_{(r)}$: (Función dependiente del radio r).

 \overline{w} : (Frecuencia circular).

Por tanto la frecuencia natural de un disco se representará por:

19

Donde:

- *a*: (Radio exterior del disco).
- λ : (Parámetro adimensional de la frecuencia natural).
- *h*: (Espesor de la placa).

CAPÍTULO III

3.1 MÉTODO DE ELEMENTOS FINITOS.

La modelación se realiza mediante el método de elementos finitos MEF. Esta técnica es un método numérico que se aplica en la actualidad para resolver problemas complejos de ingeniería, entre la amplia gama de aplicaciones se destaca soluciones de fenómenos tales como: esfuerzos, vibraciones, comportamiento de fluidos, transferencia de calor, entre otros.

Entre la variedad de análisis que se pueden realizar mediante MEF se puede destacar los siguientes:

3.1.1 Análisis estático.

Este tipo de análisis permite determinar esfuerzos y deformaciones que se manifestarán en la pieza en estudio, en donde se puede observar zonas altamente solicitadas o zonas de menores solicitaciones, haciendo posible de esta manera optimizar el diseño en estudio.

3.1.2. Análisis dinámico.

Este tipo de análisis permite conocer el comportamiento dinámico de la estructura o pieza, para así poder visualizar las zonas de mayor conflicto. Permite además conocer los modos de vibración y las frecuencias naturales.

Una de las ventajes de las soluciones mediante el MEF es que para ciertas piezas mecánicas o estructuras de gran complejidad geométrica, la solución emplea un modelo matemático simplificado de un cierto número de elementos independientes, los cuales son conectados entre si mediante nodos,

Para generar la subdivisión completa de la estructura es necesario previamente seleccionar el tipo de elemento disponible en las librerías de los softwares. La selección dependerá del tipo de problema, ya sea en 2D o 3D.

3.2 TIPOS DE ELEMENTOS DEL MEF.

3.2.1 Elemento cáscara (Shell): Son elementos que se representan mediante figuras geométricas ya sean cuadriláteros y triangulares.

3.2.2 Elementos sólidos (solid): Son elementos que se representan mediante figuras sólidas geométricas ya sea hexaedros, tetraedros, brick y cuñas. Para estos elementos cada nodo posee tres grados de libertad.

Para el análisis mediante MEF, el software Pro/Engineer requiere la especificación del tipo de elemento que se desea utilizar, para generar subdivisión de la pieza (malla), como se indica en la Fig. (3.1).

Fig. 3.1. Especificación de los elementos en Pro/engineer.

Con el fin de ilustrar lo anterior, se presenta a continuación el modelamiento de un disco acoplado a un eje y una fuerza constante aplicada en la superficie del disco tal como se aprecia en la Fig. (3.2). En esta etapa del modelamiento se ingresan las condiciones de contorno (restricciones).

Fig. 3.2. Disco sometido a una fuerza y restringido en los extremos del eje.

La cantidad total de nodos del caso en estudio se muestra claramente en las figura Fig. (3.3) en el cual, cada punto representado con el color amarillo son los nodos creados por el software pro/engineer que suman en su totalidad 1763 nodos.

Fig. 3.3. Cantidad total de nodos creados por el software Pro/engineer.

Con el fin de poder visualizar con mayor claridad los nodos se seleccionarán alguno de ellos tal como se muestra en la Fig. (3.4)

Fig. 3.4. Selección de algunos nodos

En la Fig. (3.5) se muestra la opción que permite la separación de los elementos de la malla, visualizándose claramente los elementos tetraedros.

Fig. 3.5. Separación de los elementos sólidos.

Al aplicar una escala de ampliación se puede apreciar con mayor claridad la cantidad de elementos y el tipo de sólido creado por el software Pro/engineer. Fig. (3.6)

Fig. 3.6. Separación a mayor escala de los elementos.

La solución del problema de vibración, mediante elementos finitos, en términos matriciales está dada por la ecuación general de movimiento [2.1], expresada de la siguiente forma:

$$\begin{bmatrix} M \end{bmatrix} \left\{ \begin{array}{c} \mathbf{\dot{X}} \\ X \end{array} \right\} + \begin{bmatrix} C \end{bmatrix} \left\{ \begin{array}{c} \mathbf{\dot{X}} \\ X \end{array} \right\} + \begin{bmatrix} K \end{bmatrix} \left\{ X \right\} = \left\{ F \right\}$$

$$[3.1]$$

Otra forma de escribir la ecuación [3.1] es:

$$\begin{bmatrix} m_{11} & m_{12} \dots & m_{1n} \\ m_{21} & m_{22} \dots & m_{2n} \\ m_{n1} & m_{n2} \dots & m_{nm} \end{bmatrix} \begin{bmatrix} \mathbf{\dot{x}}_{1} \\ \mathbf{\ddot{x}}_{2} \\ \mathbf{\dot{x}}_{n} \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} \dots & c_{1n} \\ c_{21} & c_{22} \dots & c_{2n} \\ c_{n1} & c_{n2} \dots & c_{nm} \end{bmatrix} \begin{bmatrix} \mathbf{\dot{x}} \\ \mathbf{\dot{x}}_{2} \\ \mathbf{\dot{x}}_{n} \end{bmatrix} + \begin{bmatrix} k_{11} & k_{12} \dots & k_{1n} \\ k_{21} & k_{22} \dots & k_{2n} \\ k_{n1} & k_{n2} \dots & k_{nm} \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ X_{n} \end{bmatrix} = \begin{bmatrix} F_{1}(t) \\ F_{2}(t) \\ F_{n}(t) \end{bmatrix}$$

$$[3.2]$$

Donde:

[*M*]: Matriz de masa, la cual incluye todas las masas. Se caracteriza por ser una matriz cuadrada

[C]: Matriz de amortiguamiento, la cual incluye tanto los efectos de amortiguamientos como también los efectos giroscópicos (sólido que se mueve en rotación alrededor de su eje.

[*K*]: Matriz de rigidez, define las fuerzas restauradoras y los términos de acoplamiento estáticos debido a los elementos de rigidez.

- $\left\{ x \right\}$: Vector de desplazamientos nodales
- $\left\{ x \right\}$: Vector de velocidades nodales
- $\left\{ \begin{matrix} x \\ x \end{matrix} \right\}$: Vector de aceleraciones nodales

 $\{F\}$: Vector de fuerza, involucra las fuerzas externas que actúan en el modelo.

3.3 ETAPAS DEL MODELAMIENTO POR ELEMENTOS FINITOS.

A continuación se indicará un resumen de las etapas del proceso que realiza Pro/Engineer, específicamente el modulo Pro/Mechanica Structure.

- Forma geométrica del modelo y datos característicos
 Especificación del tipo de material a usar y las propiedades de los elementos que componen el modelo.
- Mallado del modelo mediante elementos ya sean triangulares, cuadriláteros y otras.

- Aplicar condiciones de contorno o restricciones de movimiento en los nodos según corresponda.
- Sistemas de cargas equivalentes que simulen la fuerza externa aplicada al sistema.
- Obtención de la matriz de rigidez en cada elemento.

En esencia el método de elemento finito queda resuelto cuando en cada elemento asignado se plantea la ecuación que liga las deformaciones de los nodos con las fuerzas en ellas aplicadas a través de la matriz de rigidez. El próximo paso a seguir será determinar el desplazamiento de los puntos basado en las coordenadas asignado a cada nodo, con esto se podrá determinar las fuerzas equivalentes y los estados tensionales. Finalmente se relaciona las fuerzas en los nodos y los desplazamientos de estos para así llegar a poder definir la matriz de rigidez.

• Obtención de la matriz de rigidez total.

Tras la obtención de las matrices de todos los elementos se procede al ensamble, con el fin de calcular la matriz global de rigidez del modelo.

Por otro lado se debe tener en cuenta que cada nodo puede tener hasta seis grados de libertad por los cuales el número total de grados de libertad que tendrá el modelo será igual a seis veces el número total de nodos del modelo. Con lo ya dicho se supone que la matriz de rigidez total será una matriz cuadrada de orden seis veces el número de nodos que componen el modelo.

- Obtención de los desplazamientos.
- Al ya tener ensamblada la matriz de rigidez global se puede obtener la solución de la ecuación mediante métodos existente como el de Euler o el de Lagrange.

 Con la obtención de los desplazamientos y deformaciones en los nodos se podrá obtener las tensiones para cada elemento finito.

Una vez finalizada todas las etapas, los resultados se presentan en listados y también se pueden visualizar las zonas críticas con sus respectivos esfuerzos, desplazamientos y deformaciones cuyas magnitudes se muestran con distintos colores.

El proceso de modelamiento se puede resumir mediante el siguiente cuadro esquemático. Representado mediante la tabla (3.1).

Tabla. 3.1 Etapas de la modelación.

3.4 ANALISIS MODAL.

Es la determinación de las características dinámicas inherentes a un sistema mecánico; esta modelación dinámica se lleva a cabo en base a los parámetros modales propios del sistema:

- 1. Frecuencias naturales.
- 2. Modos naturales de vibración.
- 3. Relaciones de amortiguamiento.
- 4. Formas características de desplazamiento.

Estos parámetros dependen de la distribución de sus características de masa, rigidez y amortiguamiento.

La base del análisis modal parte de la hipótesis lineal, la cual considera que la respuesta en la vibración de un sistema puede ser expresada como la combinación de una serie de movimientos armónicos simples los cuales reciben el nombre de modos naturales de vibración. Cada modo se define a partir de sus parámetros modales, teniendo en cuenta el grado de participación de cada modo en el total de la vibración y está dado por las características de la excitación que actúa sobre el sistema y por las formas de los modos, como se indican en la Fig. (3.7). Por regla general, desde el punto de vista práctico no es necesario tener en cuenta un gran número de modos y frecuencias naturales, sino que basta considerar los modos asociados a las frecuencias comprendidas en un determinado rango de interés, generalmente las más bajas.

Por otro lado, el análisis modal es necesario para establecer la existencia de resonancia, especialmente en elementos que giran a altas velocidades.

Fig. 3.7. Modos de vibrar.
CAPÍTULO IV

4.1 MODOS DE VIBRACIONES.

Los modos de vibraciones se realizaron en un disco sin dientes y discos dentados, simulando de este modo una sierra circular, Con el fin de conocer la influencia de los dientes en los modos de vibrar, se modelaron tres discos dentados:

- Disco con un ¼ de periferia dentada.
- Disco con un ½ de periferia dentada.
- Disco con ¾ de periferia dentada.

Con las características físicas y las condiciones de contorno introducidos a los modelos de discos, se procede a determinar los modos propios y sus respectivas frecuencias naturales.

Se debe considerar que el análisis para discos sin dientes y discos dentados en condiciones estacionarias se realizo para 40 condiciones distintas y para cada un de éstas se generaron tres gráficos.

Por la cantidad numerosa de gráficos resultados en este trabajo, se seleccionó un disco con sus tres condiciones geométricas (dientes), la cantidad total de gráficos y resultados obtenidos se adjuntaron mediante un CD Llamado "Análisis para discos y discos dentados en condiciones estacionarias"

4.1.1 Disco normal.

1º Caso de estudio: El primer análisis se realiza en un disco normal (sin dientes), empotrado en el centro mediante un par de discos gruesos de menor diámetro, llamados collarines, como se muestra en la Fig. (4.1).

Las propiedades geométricas son las siguientes:

Diámetro exterior disco 350 (mm).

Diámetro interior collarín 35 (mm).

Diámetro Exterior collarín 65(mm).

Espesor disco 1.8 (mm).

Acero SAE 1075.

Fig. 4.1. Disco empotrado mediante collarines (líneas rojas),

el punto de color azul representa el punto cero del arco.

El análisis se realizó sólo para los cuatros primeros modos, ya que se consideran los más importantes debido a que los desplazamientos son más significativos. Los resultados para las frecuencias naturales se encuentran en la tabla (4.1).

Modos	Frecuencia Hz	
1	816,52	
2	819,02	
3	878,37	
4	1113,68	

De los modos naturales de vibración se obtendrán las formas características de los desplazamientos, mostrado en Fig. (4.2). También es posible conocer el desplazamiento a lo largo de la periferia del disco Fig. (4.3).

Fig.4.2 Modos de vibrar.

Fig. 4.3 Desplazamientos a lo largo de la periferia.

• Frecuencia versus desplazamientos.

Para el análisis dinámico se considerará la acción de la gravedad, el software entrega los gráficos de frecuencias naturales en función de los desplazamientos, como se indica en la Fig. (4.4).

Fig. 4.4 Frecuencia natural – Desplazamientos.

4.1.2 Disco con ¼ de periferia dentada.

<u>2º Caso de estudio</u>: Disco con ¼ de periferia dentada (Fig.4.5) con las siguientes propiedades:

Diámetro exterior 350 (mm).

Diámetro collarín 35 (mm). Diámetro exterior collarín 65 (mm). Espesor disco 1,8 (mm). 20 dientes, Altura del diente 8,4(mm). Acero SAE 1075.

Fig. 4.5 Disco con ¼ de periferia dentada, el punto de color azul representa el punto cero del arco.

Los resultados para las frecuencias naturales se encuentran en la tabla (4.2).

Modos	Frecuencia Hz
1	819,7
2	837,53
3	902,33
4	1131,72

Tabla 4.2 Frecuencias naturales.

Con los modos naturales de vibración del disco dentado se obtienen los modos y desplazamientos a lo largo de la periferia, mostrados en las Fig. (4.6) y Fig. (4.7) respectivamente.

Fig. 4.6 Modos de vibrar

Fig. 4.7 Desplazamientos a lo largo de la periferia.

Las frecuencias naturales en función desplazamientos están representadas en la Fig. (4.8).

Fig. 4.8 Frecuencia natural - Desplazamientos.

4.1.3 Disco con ½ periferia dentada.

<u>3º Caso de estudio</u>: Disco con ½ periferia dentada, Fig. (4.9), con las siguientes propiedades:

Diámetro exterior 350 (mm)

Diámetro collarín35 (mm)

Diámetro exterior collarín 65 (mm)

Espesor disco 1,8 (mm)

40 dientes, Altura del diente 8,4 (mm)

Acero SAE 1075.

Fig.4.9. Disco con ½ periferia dentada, el punto de color azul representa el punto cero del arco.

Los resultados para las frecuencias naturales se encuentran en la Tabla (4.3).

Modos	Frecuencia Hz			
1	837,66			
2	846,73			
3	923,57			
4	1150,61			

Tabla 4.3 Frecuencias naturales.

Con los modos naturales de vibración del disco dentado se obtendrán las formas características de los desplazamientos, mostrados en las Fig. (4.10) y Fig. (4.11) respectivamente.

Fig. 4.10 Modos de vibrar.

Las frecuencias naturales en función de los desplazamientos se muestran en la Fig. (4.12).

Fig. 4.12. Frecuencia natural – Desplazamientos.

4.1.4 Disco con ³/₄ periferia dentada.

<u>4º Caso de estudio</u>: Disco con ¾ periferia dentada (Fig. 4.13), con las siguientes propiedades.

Diámetro exterior 350 (mm).

Diámetro collarín 35 (mm).

Diámetro exterior collarín 65 (mm).

Espesor disco 1,8 (mm).

60 dientes, Altura del diente 8,4 (mm).

Acero SAE 1075.

Fig. 4.13 Disco con ¾ periferia dentada. el punto de color azul representa el punto cero del arco.

Los resultados para las frecuencias naturales se encuentran en la tabla (4.4).

Modos	Frecuencia Hz
1	847,47
2	886,1
3	942,25
4	1177,34

Tabla 4.4 Frecuencias naturales.

Con los modos naturales de vibración del disco dentado se obtendrán las formas características de los desplazamientos, mostrados en las Fig. (4.14) y Fig. (4.15) respectivamente.

Fig. 4.15 Desplazamientos a lo largo de la periferia.

Las frecuencias naturales en función de los desplazamientos se muestran en la Fig. (4.16).

Fig. 4.16. Frecuencia natural – Desplazamientos.

4.1.5 Tabla resumen.

Mediante las tablas (4.5), (4.6) y (4.7) se procede a resumir los resultados obtenidos del análisis modal con sus respectivas frecuencias naturales, ya sea para el caso de disco sin dientes, como también para dientes ¼ periferia, dientes ¼ periferia, dientes ¼ periferia, en los cuales se variaron tanto los diámetros exteriores (D), como también el diámetro del collarín (d), mediante la relación, $\frac{d}{D} = 0.1$; 0,2; 0,3; 0,4. Para el caso de la tabla (4.7) se obtuvieron

resultados con los valores extremos, es decir, $\frac{d}{D} = 0.1$; $\frac{d}{D} = 0.4$.

Tabla (4.5)Resumen de resultados del análisispara los diferentes casos de estudio

Diámetro exterior 184.

Collarín	Modos	Disco sin dientes	Dientes ¼ periferia	Dientes ½ periferia	Dientes ³ / ₄ periferia
Diámetro mm		Frecuencia Hz	Frecuencia Hz	Frecuencia Hz	Frecuencia Hz
18,4	1	2841,71	2842,95	2847,86	2893,93
18,4	2	2868,59	2901,17	2899,41	2957,36
18,4	3	2909,13	2994,99	2993,71	3028,83
18,4	4	3582,15	3622,41	3625,96	3682,53
36,8	1	3827,3	3826,96	3913,46	3918,73
36,8	2	3886,09	3897,21	4028,7	4106,39
36,8	3	3901,02	4009,89	4105,79	4137,78
36,8	4	4605,88	4671,53	4819,26	4795,08
55,2	1	5385,56	5388,93	5442,28	5541,16
55,2	2	5529,32	5528,29	5671,86	5787,22
55,2	3	5554,19	5690,24	5843,44	5826,43
55,2	4	6307,57	6359,45	6528,91	6551,92
73,6	1	8128,24	8173,75	8249,71	8369,3
73,6	2	8328,53	8385,54	8605,08	8838,4
73,6	3	8340,92	8611,87	8837,64	8911,99
73,6	4	9122,84	9276,12	9468,12	9613,24

Tabla (4.6) Resumen de resultados del análisis para los

diferentes casos de estudio

Collarín	Modos	Disco sin dientes	Dientes ¼	Dientes ½	Dientes ³ / ₄
	modeo	Frecuencia	Frecuencia	Frecuencia	Frecuencia
Diámetro (mm)		Hz	Hz	Hz	Hz
20	1	3051,55	2976,48	3061.49	3143,38
20	2	3076,07	3021,18	3138.74	3275,13
20	3	3146,99	3169,46	3311,14	3334,9
20	4	3897.20	3852,2	3985.26	4040,58
40	1	4048,28	4079,38	4062,72	4124,59
40	2	4081,54	4099,66	4234,64	4406,65
40	3	4089,14	4308,27	4442,93	4425,58
40	4	4835,64	4964,19	5048,52	5070,73
60	1	5691,56	5800,17	5812,88	5840,74
60	2	5847,29	6006,23	6128,54	6360,35
60	3	5889,14	6224,61	6526,19	6378,47
60	4	6741,38	7007,83	7227,52	7117,46
80	1	8605,16	8651,16	8744,71	8947,57
80	2	8897,26	8897,22	9421,9	9760,74
80	3	8975,31	9277,89	9805,58	9902,55
80	4	9989,49	10271,92	10564,35	10603,3

Diámetro exterior 200.

Tabla (4.7) Resumen de resultados del análisis

para los diferentes casos de estudio

Diámetro exterior 350.

Collarín	Modos	Disco sin dientes	Dientes ¼ periferia	Dientes ½ periferia	Dientes ³ / ₄ periferia
		Frecuencia	Frecuencia	Frecuencia	Frecuencia
Diámetro (mm)		Hz	Hz	Hz	Hz
35	1	816,52	819,7	837,66	847,47
35	2	819,02	837,53	846,73	886,1
35	3	878,37	902,33	923,57	942,25
35	4	1113,68	1131,72	1150,61	1177,34
140	1	2135,99	2146,73	2160,87	2215,79
140	2	2182,43	2200,11	2269,95	2438,45
140	3	2187,71	2300,31	2419,15	2453,51
140	4	2445,38	2517,1	2589,23	2670,87

4.1.6 Resultados gráficos.

De los resultados de la tabla (4.5) se procede a graficar las frecuencias naturales para los dos primeros modos versus $\frac{d}{D}$, para así poder observar tendencias al aumentar la relación de diámetros, es decir, $\frac{d}{D}$ =0.1, 0.2, 0.3, 0.4. Los cuales se representan mediante las figuras (4.17) a (4.24).

Diámetro exterior 184 (mm).

Fig. 4.17. Disco sin dientes.

Diámetro exterior 184 (mm).

Fig. 4.18. Dientes ¼ periferia.

Diámetro exterior 184 (mm).

Fig. 4.19. Dientes 1/2 periferia.

Diámetro exterior 184 (mm).

Fig. 4.20. Dientes ³/₄ periferia.

Diámetro exterior 184 (mm).

Fig. 4.21. Disco sin dientes.

Diámetro exterior 184 (mm).

Fig. 4.22. Dientes ¼ periferia.

Fig. 4.23. Dientes 1/2 periferia.

Diámetro exterior 184 (mm).

Fig. 4.24. Dientes ¾ periferia.

Diámetro exterior 184 (mm).

Para los resultados de la tabla (4.7) se procede a graficar las frecuencias naturales para los primeros dos modos versus $\frac{d}{D}$, para así poder observar tendencias al aumentar la relación de diámetros, es decir, $\frac{d}{D}$ = 0.1 y $\frac{d}{D}$ =0.4. Los cuales se representan mediante las figuras (4.25) a (4.32).

Diámetro exterior 350 (mm).

Fig. 4.25. Disco sin dientes.

Diámetro exterior 350 (mm).

Fig. 4.26. Dientes ¼ periferia.

Diámetro exterior 350 (mm).

Fig. 4.27. Dientes 1/2 periferia.

Fig. 4.28. Dientes ³⁄₄ periferia.

Fig. 4.29. Disco sin dientes.

Diámetro exterior 350 (mm).

Fig. 4.30. Dientes ¼ periferia.

Fig. 4.31. Dientes 1/2 periferia.

Diámetro exterior 350 (mm).

Fig. 4.32. Dientes ³/₄ periferia.

4.2 ANÁLISIS DE ESFUERZOS EN CONDICIONES DINÁMICAS.

Se determinaron los esfuerzos en los cuatro casos de estudios anteriores, para tres condiciones de velocidades de rotación: 600, 840 y 1080 rpm, todas ellas bajo la acción de una fuerza de presión constante de $127.5 \frac{N}{mm^2}$, (Ver, Anexo 1, Módulo de rotura, Estado seco; fuente: Díaz, J. 1986.),que simula la fuerza de corte. El software permite también conocer las frecuencias de vibración bajo estas condiciones de rotación, es decir, tantos los esfuerzos y frecuencias de vibración producto de la acción dinámica (fuerza centrifuga). Se debe considerar que el análisis de discos y discos dentados en condiciones dinámicas se realizo para 48 condiciones distintas y para cada una de estas se generaron dos gráficos, por ser una cantidad numerosa de gráficos se

seleccionó un disco con sus tres condiciones geométricas (dientes), la totalidad de resultados obtenidos en condiciones dinámicas se adjuntaron en un CD llamado "Análisis para discos y discos dentados en condiciones dinámicas".

4.2.1 Disco sin dientes.

1º Caso de estudio

Disco sin dientes Fig. (4.33), con velocidad de rotación de 600 rpm y las siguientes propiedades:

Diámetro exterior disco 350 (mm).

Diámetro interior collarín 35 (mm).

Diámetro Exterior collarín 65(mm).

Espesor disco 1.8 (mm).

Acero SAE 1075.

Fig. 4.33. Disco sin dientes con collarines representados mediante líneas de color.

El análisis arrojó los siguientes resultados para los esfuerzos en función de las frecuencias, tanto en el disco como en la zona del collarín, como se indican en las Fig. (4.34), Fig. (4.35), y en la tabla (4.8).

Fig. 4.34. Esfuerzos en el disco sobre la

superficie de apoyo del collarín y las frecuencias.

Fig. 4.35. Esfuerzos en el disco y las frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro mm		Hz	Collarín	Disco
35	1	806,38	18,2839	1,1025
35	2	811,023	12,8986	0,714617
35	3	874,575	2,18938	0,354796
35	4	1100,18	29,453	6,87205

Tabla 4.8 Esfuerzos en función de las frecuencias.

2ª Caso de estudio:

Disco con velocidad de rotación de 840 rpm y con las mismas propiedades del caso 1.

Los esfuerzos en función a las frecuencias se muestran en las Fig. (4.36), Fig. (4.37) y en la tabla (4.9).

Fig. 4.36. Esfuerzos en el disco sobre la superficie de apoyo del collarín y las frecuencias.

Fig. 4.37. Esfuerzos en el disco y las frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro (mm)		Hz	Collarín	Disco
35	1	806,3849	18,2832	1,10246
35	2	811,0238	12,933	0,716529
35	3	874,5751	2,18304	0,353768
35	4	1100,188	29,4565	6,87288

Tabla 4.9. Esfuerzos en función de las frecuencias.

3º Caso de estudio:

Disco con velocidad de 1080 rpm y las mismas propiedades del caso1 Los esfuerzos en función de las frecuencias se muestran en las Fig. (4.38), Fig. (4.39) y tabla (4.10).

Fig. 4.38. Esfuerzos en el disco sobre la superficie de apoyo del collarín y las frecuencias.

Fig. 4.39. Esfuerzos en el disco y las frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro (mm)		Hz	Collarín	Disco
35	1	806,38	18,2823	1,10241
35	2	811,02	12,979	0,719078
35	3	874,57	2,17458	0,352397
35	4	1100,1	29,4613	6,87399

Tabla. 4.10 Esfuerzos en función de las frecuencias.

4.2.2. Disco con ¼ de periferia dentada.

4º Caso de estudio:

Disco con ¼ de periferia dentada, velocidad de rotación de 600 rpm y con las siguientes propiedades:

Diámetro exterior 350 (mm).

Diámetro collarín 35 (mm).

Diámetro exterior collarín 65 (mm).

Espesor disco 1,8 (mm).

20 dientes, Altura del diente 8,4(mm).

Acero SAE 1075.

Fig. 4.40 Disco con ¼ periferia dentada restringido mediante collarines.

Los esfuerzos en función de las frecuencias se muestran en las Fig. (4.41), Fig. (4.42) y tabla (4.11).

Fig. 4.41. Esfuerzos en el disco sobre la superficie de apoyo del collarín y las frecuencias.

Fig. 4.42. Esfuerzos en la superficie del diente y frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro (mm)		Hz	Collarín	Diente
35	1	813,84	11,9563	1,24654
35	2	833,76	274,404	9,36421
35	3	893,6	206,116	39,9491
35	4	1123,9	246,633	75,2652

Tabla 4.11 Esfuerzos en función de las frecuencias.

5º Caso de estudio:

Disco con ¼ de periferia dentada, velocidad de rotación de 840 rpm y con las mismas propiedades del caso 4.

Los esfuerzos en función de las frecuencias se muestran en las Fig. (4.43), Fig. (4.44) y tabla (4.12).

Fig. 4.43. Esfuerzos en el disco sobre la superficie de apoyo del collarín y las frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro (mm)		Hz	Collarín	Diente
35	1	813,84	11,954	1,2463
35	2	833,76	274,356	9,36258
35	3	893,6	206,124	39,9506
35	4	1123,9	246,619	75,2608

Tabla 4.12 Esfuerzos en función de las frecuencias.

6º Caso de estudio:

Disco con ¼ de periferia dentada, velocidad de rotación de 1080 rpm y con las mismas propiedades del caso 4.

Los esfuerzos en función de las frecuencias se muestran en las Fig. (4.45), Fig. (4.46) y tabla (4.13).

Fig. 4.45. Esfuerzos en el disco sobre la superficie de apoyo del collarín y las frecuencias.

Fig. 4.46. Esfuerzos en la superficie del diente y frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro (mm)		Hz	Collarín	Diente
35	1	813,84	11,9509	1,24598
35	2	833,76	274,292	9,36041
35	3	893,6	206,134	39,9526
35	4	1123,9	246,6	75,255

3.2.3 Disco con ½ periferia dentada.

7º caso de estudio:

Disco con ½ periferia dentada, velocidad de rotación de 600 rpm y con las siguientes propiedades:

Diámetro exterior 350 (mm).

Diámetro collarín35 (mm).

Diámetro exterior collarín 65 (mm).

Espesor disco 1,8 (mm).

40 dientes, Altura del diente 8,4 (mm).

Acero SAE 1075.

Fig. 4.47. Disco con ½ periferia dentada restringido mediante collarines.

Los esfuerzos en función de las frecuencias se muestran en las Fig. (4.48), Fig. (4.49) y tabla (4.14).

Fig. (4.48) Esfuerzos en el disco sobre la superficie de apoyo del collarín y las frecuencias.

Fig. (4.49) Esfuerzos en la superficie del diente y frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro (mm)		Hz	Collarín	Diente
35	1	830,87	266,344	30,6006
35	2	840,34	125,712	14,0775
35	3	921,5	55,9373	9,56569
35	4	1142,79	55,0534	24,4258

Tabla 4.14 Esfuerzos en función de las frecuencias.

8º Caso de estudio:

Disco con ½ periferia dentada, velocidad de rotación de 840 rpm y con las mismas propiedades del caso 7.

Los esfuerzos en función de las frecuencias se muestran en las Fig. (4.50), Fig. (4.51) y tabla (4.15).

Fig. 4.50. Esfuerzos en el disco sobre la superficie de apoyo del collarín y las frecuencias.

Fig. (4.51) Esfuerzos en la superficie del diente y frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro (mm)		Hz	Collarín	Diente
35	1	830,87	266,393	30,6063
35	2	840,34	125,722	14,0785
35	3	921,5	55,9543	9,56861
35	4	1142,79	55,0768	24,4362

Tabla 4.15	Esfuerzos	en función	de las	frecuencias.
	L01001200	CITICIDIO	uc iuo	neoucholas.

9º Caso de estudio:

Disco con ½ periferia dentada, velocidad de rotación de 1080 rpm y con las mismas propiedades del caso 7.

Los esfuerzos en función de las frecuencias se muestran en las Fig. (4.52), Fig. (4.53) y tabla (4.16).

superficie de apoyo del collarín y las frecuencias.

Fig. 4.53. Esfuerzos en la superficie del diente y frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro (mm)		Hz	Collarín	Diente
35	1	830,87	266,459	30,6138
35	2	840,34	125,734	14,08
35	3	921,5	55,9771	9,57251
35	4	1142,79	55,108	24,45

Tabla 4.16 Esfuerzos en función de las frecuencias.

4.2.4 Disco con ³/₄ de periferia dentada.

10º Caso de estudio:

Disco con ³/₄ periferia dentada, velocidad de rotación de 600 rpm y con las siguientes propiedades:

Diámetro exterior 350 (mm).

Diámetro collarín 35 (mm).

Diámetro exterior collarín 65 (mm).

Espesor disco 1,8 (mm).

60 dientes, Altura del diente 8,4 (mm).

Acero SAE 1075.

Fig. 4.54. Disco con ³⁄₄ periferia dentada restringido mediante collarines.

Los esfuerzos en función de las frecuencias se muestran en las Fig. (4.55) y Fig. (4.56) y tabla (4.17).

Fig. (4.56) Esfuerzos en la superficie del diente y frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro (mm)		Hz	Collarín	Diente
35	1	852,458	497,687	59,9951
35	2	893,571	237,978	20,7188
35	3	944,587	304,935	47,6575
35	4	1177,86	633,989	233,59

Tabla. 4.17 Esfuerzos en función de las frecuencias.

11º Caso de estudio

Disco con ³⁄₄ periferia dentada, velocidad de rotación de 840 rpm y con las mismas propiedades del caso 10. Los esfuerzos en función de las frecuencias se muestran en las Fig. (4.57), Fig. (4.58) y Tabla (4.18).

Fig. 4.57. Esfuerzos en el disco sobre la superficie de apoyo del collarín y las frecuencias.

Fig. 4.58. Esfuerzos en la superficie del diente y frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro (mm)		Hz	Collarín	Diente
35	1	852,458	497,692	59,9957
35	2	893,571	237,912	20,7131
35	3	944,587	304,787	47,6344
35	4	1177,86	633,992	233,591

Tabla 4.18 Esfuerzos en función de las frecuencias.

12º Caso de estudio

Disco con ³⁄₄ periferia dentada, velocidad de rotación de 1080 rpm y con las mismas propiedades del caso 10.

Los esfuerzos en función de las frecuencias se muestran en las Fig. (4.59), Fig. (4.60) y tabla (4.19).

Fig. 4.59. Esfuerzos en el disco sobre la superficie de apoyo del collarín y las frecuencias.

Fig. 4.60. Esfuerzos en la superficie del diente y frecuencias.

Tabla 4.19 Esfuerzos en función de las frecuencias.

Collarín	Modos	Frecuencia	Esfuerzo	(N /mm²)
Diámetro (mm)		Hz	Collarín	Diente
35	1	852,458	497,698	59,9964
35	2	893,571	237,824	20,7054
35	3	944,587	304,59	47,6035
35	4	1177,86	633,995	233,592

4.2.5 Tabla resumen.

Mediante las tablas (4.20) a (4.27) se procede a resumir los resultados obtenidos para el análisis de frecuencias de vibración y esfuerzos, tanto para disco como discos dentados, para lo cual se variaron tanto las velocidades de rotación (600, 840, 1080 rpm), los diámetros exteriores (184 mm, 350 mm) y la

relación
$$\frac{d}{D}$$
, para este ultimo se consideró la relación $\frac{d}{D}$ =0.1; $\frac{d}{D}$ =0.4.

			Disco sin		
Velocidad	Diámetro(mm)	Modos	dientes	Esfuerzo	(N /mm²)
			Frecuencia		Superficie
de Rotación	Collarín		Hz	Collarín	disco
600 rpm					
	18,4	1	2845,539	1058,07	90,3577
	18,4	2	2868,659	717,544	17,7586
	18,4	3	3025,951	520,203	71,0698
	18,4	4	3653,515	1257,51	234,893
	73,6	1	8131,072	333,767	47,1951
	73,6	2	8313,892	352,272	44,1456
	73,6	3	8371,238	477,269	39,6646
	73,6	4	9120,97	427,99	32,223
840 rpm					
	18,4	1	2845,539	1058,07	90,3577
	18,4	2	2868,659	717,552	17,7587
	18,4	3	3025,951	520,204	71,0699
	18,4	4	3653,515	1257,53	234,896
	73,6	1	8131,072	333,767	47,195
	73,6	2	8313,893	352,277	44,1462
	73,6	3	8371,238	477,256	39,6634
	73,6	4	9120,976	427,961	32,2209
1080rpm					
	18,4	1	2845,54	1058,07	90,358
	18,4	2	2868,66	717,563	17,759
	18,4	3	3025,95	520,205	71,07
	18,4	4	3653,51	1257,55	234,9
	73,6	1	8131,07	333,766	47,195
	73,6	2	8313,89	352,284	44,1471
	73,6	3	8371,23	477,237	39,6619
	73,6	4	9120,97	427,923	32,218

TABLA 4.20. Esfuerzos para discos sin dientes condiámetro de 184 (mm).

			Dientes 1/4		
Velocidad	Collarín	Modos	periferia	Esfuerzo	(N /mm²)
	Diámetro		Frecuencia		
de Rotación	(mm)		Hz	Collarín	Diente
600 rpm					
	18,4	1	2870,348	1299,04	262,201
	18,4	2	2908,049	418,464	6,29851
	18,4	3	2976,849	80,8949	26,8496
	18,4	4	3654,951	884,591	336,328
	73,6	1	8176,661	207,069	28,4604
	73,6	2	8389,033	366,456	82,7964
	73,6	3	8602,726	287,788	83,8513
	73,6	4	9249,89	306,919	56,5658
840 rpm					
	18,4	1	2870,34	1299,04	262,201
	18,4	2	2908,05	418,477	6,29871
	18,4	3	2976,84	80,863	26,839
	18,4	4	3654,951	884,567	336,319
	73,6	1	8176,661	207,072	28,4609
	73,6	2	8389,033	366,458	82,7968
	73,6	3	8602,726	287,79	83,8519
	73,6	4	9294,989	306,923	56,5665
1080rpm					
	18,4	1	2870,35	1299,04	262,201
	18,4	2	2908,04	418,495	6,2989
	18,4	3	2976,85	80,82	29,824
	18,4	4	3654,95	884,534	336,307
	73,6	1	8176,66	207,077	28,4615
	73,6	2	8389,03	366,46	82,7973
	73,6	3	8602,72	287,793	83,8528
	73,6	4	9294,98	306,928	56,5675

Tabla 4.21. Esfuerzos en disco con ¼ periferia dentada condiámetro de 184 (mm).

			Dientes 1/2		
Velocidad	Collarín	Modos	periferia	Esfuerzo	(N /mm²)
	Diámetro		Frecuencia		
de Rotación	(mm)		Hz	Collarín	Diente
600 rpm					
	18,4	1	2905,062	1299,04	262,201
-	18,4	2	2940,226	418,464	6,29851
-	18,4	3	3003,489	80,8949	26,8496
	18,4	4	3680,818	884,591	336,328
	73,6	1	8246,61	730,375	105,082
	73,6	2	8609,209	814,396	248,768
	73,6	3	8843,346	308,36	75,3996
	73,6	4	9485,212	1030,29	225,829
840 rpm					
	18,4	1	2905,062	1386,13	244,846
-	18,4	2	2940,226	33,3783	3,20563
	18,4	3	3003,489	15,6205	2,83729
	18,4	4	3680,818	688,453	241,675
	73,6	1	8246,61	730,405	105,086
	73,6	2	8609,209	814,389	248,766
	73,6	3	8843,346	308,348	75,3968
	73,6	4	9485,212	1030,29	225,83
1080rpm					
	18,4	1	2905,062	1386,08	244,838
	18,4	2	2940,226	33,3703	3,20486
	18,4	3	3003,489	15,618	2,83684
	18,4	4	3680,818	688,474	241,683
	73,6	1	8246,61	730,389	105,084
	73,6	2	8609,209	814,393	248,768
	73,6	3	8843,346	308,355	75,3984
	73,6	4	9485,212	1030,29	225,83

Tabla 4.22. Disco con ½ periferia dentada con diámetro de 184 (mm).

			Dientes ³ / ₄		
Velocidad	Collarín	Modos	periferia	Esfuerzo	(N /mm²)
	Diámetro		Frecuencia		
de Rotación	(mm)		Hz	Collarín	Diente
600 rpm					
	18,4	1	2874,596	1171,94	241,693
	18,4	2	2944,337	303,528	54,776
	18,4	3	3002,1	248,482	35,0171
	18,4	4	3644,809	289,625	107,558
	73,6	1	8394,055	47,9761	13,9139
	73,6	2	8822,865	76,1144	12,0205
	73,6	3	8875,416	196,632	34,2246
	73,6	4	9607,477	231,182	37,5724
840 rpm					
	18,4	1	2874,596	1171,94	241,694
	18,4	2	2944,337	303,574	54,7843
	18,4	3	3002,1	248,449	35,0125
	18,4	4	3644,809	289,623	107,557
	73,6	1	8394,055	47,9665	13,9111
	73,6	2	8822,865	76,1058	12,0192
	73,6	3	8875,416	196,623	34,2229
	73,6	4	9607,477	231,18	37,5721
1080rpm					
	18,4	1	2874,596	1171,94	241,695
	18,4	2	2944,337	303,636	54,7954
	18,4	3	3003,1	248,405	35,0063
	18,4	4	3644,809	289,621	107,557
	73,6	1	8394,055	47,9537	13,9074
	73,6	2	8822,865	76,0943	12,0174
	73,6	3	8875,416	196,61	34,2207
	73,6	4	9607,477	231,178	37,5717

Tabla 4.23. Disco con ³⁄₄ periferia dentada con diámetro de 184 (mm).

			Disco sin		
Velocidad	Collarín	Modos	dientes	Esfuerzo	(N /mm²)
	Diámetro		Frecuencia		Superficie
de Rotación	(mm)		Hz	Collarín	disco
600 rpm					
	35	1	806,38	18,2839	1,1025
	35	2	811,023	12,8986	0,714617
	35	3	874,575	2,18938	0,354796
	35	4	1100,18	29,453	6,87205
	140	1	2135,053	8,5191	1,28413
	140	2	2184,134	17,642	1,65849
	140	3	2188,102	14,4014	1,57779
	140	4	2448,068	27,4281	4,89955
840 rpm					
	35	1	806,38	18,2832	1,10246
	35	2	811,02	12,933	0,716529
	35	3	874,57	2,18304	0,353768
	35	4	1100,1	29,4565	6,87288
	140	1	2135,053	8,52897	1,28562
	140	2	2184,134	17,6291	1,65729
	140	3	2188,102	14,4232	1,58019
	140	4	2448,068	27,4178	4,89771
1080rpm					
	35	1	806,38	18,2823	1,10241
	35	2	811,02	12,979	0,719078
	35	3	874,57	2,17458	0,352397
	35	4	1100,1	29,4613	6,87399
	140	1	2135,053	8,54213	1,28761
	140	2	2184,134	17,612	1,65568
	140	3	2188,102	14,4524	1,58338
	140	4	2448,068	27,4041	4,89526

TABLA 4.24. Esfuerzos para discos sin dientes con
diámetro de 350 (mm).

			Dientes 1/4		
Velocidad	Collarín	Modos	periferia	Esfuerzo	(N /mm²)
	Diámetro		Frecuencia		
de Rotación	(mm)		Hz	Collarín	Diente
600 rpm					
	35	1	813,84	11,9563	1,24654
	35	2	833,76	274,404	9,36421
	35	3	893,6	206,116	39,9491
	35	4	1123,9	246,633	75,2652
	140	1	2152,75	123,133	16,5455
	140	2	2202,34	175,987	40,5603
	140	3	2301,2	179,943	47,1245
	140	4	2515,13	101,027	16,8799
840 rpm					
-	35	1	813,84	11,954	1,2463
	35	2	833,76	274,356	9,36258
	35	3	893,6	206,124	39,9506
	35	4	1123,9	246,619	75,2608
	140	1	2152,75	123,14	16,5465
	140	2	2202,34	176,008	40,5653
	140	3	2301,2	179,934	47,1221
	140	4	2515,13	101,064	16,8861
1080rpm					
	35	1	813,84	11,9509	1,24598
	35	2	833,76	274,292	9,36041
	35	3	893,6	206,134	39,9526
	35	4	1123,9	246,6	75,255
	140	1	2152,75	123,15	16,5478
	140	2	2202,34	176,037	40,5718
	140	3	2301,2	179,921	47,1189
	140	4	2515,13	101,114	16,8945

Tabla 4.25. Esfuerzos en disco con ¼ periferia dentada con diámetro de 350 (mm).

			Dientes 1/2		
Velocidad	Collarín	Modos	periferia	Esfuerzo	(N /mm²)
	Diámetro		Frecuencia		
de Rotación	(mm)		Hz	Collarín	Diente
600 rpm					
	35	1	830,87	266,344	30,6006
	35	2	840,34	125,712	14,0775
	35	3	921,5	55,9373	9,56569
	35	4	1142,79	55,0534	24,4258
	140	1	2160,76	461,214	69,9537
	140	2	2267,92	603,168	127,99
	140	3	2425,32	119,527	19,4569
	140	4	2596,7	477,439	87,9723
840 rpm					
	35	1	830,87	266,393	30,6063
	35	2	840,34	125,722	14,0785
	35	3	921,5	55,9543	9,56861
	35	4	1142,79	55,0768	24,4362
	140	1	2160,76	461,239	69,9575
	140	2	2267,92	603,178	127,992
	140	3	2425,32	119,502	19,4529
	140	4	2596,7	477,444	87,9733
1080rpm					
•	35	1	830,87	266,459	30,6138
	35	2	840,34	125,734	14,08
	35	3	921,5	55,9771	9,57251
	35	4	1142,79	55,108	24,45
	140	1	2160,76	461,272	69,9624
	140	2	2267,92	603,191	127,995
	140	3	2425,32	119,468	19,4474
	140	4	2596,7	477,451	87,9745

Tabla 4.26. Disco con ½ periferia dentada con diámetro de 350 (mm).

			Dientes ³ / ₄		
Velocidad	Collarín	Modos	periferia	Esfuerzo	(N /mm²)
	Diámetro		Frecuencia		_
de Rotación	(mm)		Hz	Collarín	Diente
600 rpm					
	35	1	852,458	497,687	59,9951
	35	2	893,571	237,978	20,7188
	35	3	944,587	304,935	47,6575
	35	4	1177,86	633,989	233,59
	140	1	2214,56	709,329	179,478
	140	2	2438,19	172,525	18,994
	140	3	2460,51	66,1037	8,79816
	140	4	2679,36	143,452	28,6439
840 rpm					
	35	1	852,458	497,692	59,9957
	35	2	893,571	237,912	20,7131
	35	3	944,587	304,787	47,6344
	35	4	1177,86	633,992	233,591
	140	1	2214,56	709,289	179,468
	140	2	2438,19	172,528	18,9943
	140	3	2460,51	66,1502	8,80436
	140	4	2679,36	143,452	28,6439
1080rpm					
	35	1	852,458	497,698	59,9964
	35	2	893,571	237,824	20,7054
	35	3	944,587	304,59	47,6035
	35	4	1177,86	633,995	233,592
	140	1	2214,56	709,236	179,455
	140	2	2438,19	172,532	18,9947
	140	3	2460,51	66,2124	8,81262
	140	4	2679,36	143,452	28,6438

Tabla 4.27Disco con ¾ periferia dentada con
diámetro de 350 (mm).

CAPÍTULO V

CONCLUSIONES

Se puede concluir, que la determinación de los modos de vibrar y sus respectivas frecuencias tantos en condiciones estacionarias como giratorias permite conocer la existencia o no del estado de resonancia. Por otro lado, señalar que el análisis mediante el Pro/Engineer, basado en el método de elementos finitos es una herramienta útil, ya que el modelo matemático del disco en vibración corresponde a una ecuación diferencial con derivadas parciales de cuarto orden, cuya solución exacta es compleja.

Específicamente, para las vibraciones libres (modos de vibrar), los resultados obtenidos para los diferentes casos, son los siguientes:

- Con un diámetro del disco D = 184 (mm), y con una relación $\frac{d}{D}$ = 0.1, 0.2, 0.3 y 0.4, se observa que para los diferentes modos de vibrar las frecuencias naturales aumentan levemente a medida que se incrementa el número de dientes, excepto para el caso del disco con ½ periferia dentada con $\frac{d}{D}$ = 0.1 y para los modos 2 y 3 en que las frecuencias disminuyen levemente.
- Con un diámetro del disco D = 200 (mm) y $\frac{d}{D}$ = 0.1. En el disco sin diente y para los discos dentados con ½ y ¾ periferia, se aprecia un aumento en las frecuencias naturales, no así para el disco de ¼ de periferia dentada.
- En el disco sin dientes y disco dentados con D = 200 (mm) y $\frac{d}{D}$ = 0.3 ; 0.4 .Existe una clara tendencia del aumento de las frecuencias naturales para los cuatros primeros modos
- En el disco sin dientes y disco dentados con D = 350 (mm) y ^d/_D = 0.1;
 0.4, se observa una clara tendencia del aumento de sus respectivas frecuencias naturales para los cuatro primeros modos.
- Tanto para el disco sin dientes y discos dentados, se observa claramente que las frecuencias naturales aumentan linealmente a medida que se

incrementa la relación $\frac{d}{D}$ como se muestran en las figuras (4.17) a (4.32).

 En general, para todos casos (disco y discos dentados) se cumple lo establecido en la teoría que f₁< f₂ < f₃ < f₄ (frecuencias naturales).

De los resultados obtenidos para el caso dinámico, es decir, discos girando a 600, 840 y 1080 rpm, las conclusiones son las siguientes:

- Para disco sin dientes, como así también para todos los discos dentados con diámetro de 184 y 350 (mm), y una relación $\frac{d}{D}$ = 0.1; 0.4, se observa que las frecuencias de vibración aumentan de manera importante a medida que aumenta la relación $\frac{d}{D}$, para las tres velocidades (tabla 4.20 a 4.27).
- Para el disco sin dientes y para todos los discos dentados con una relación $\frac{d}{D}$ = 0.1; 0.4, las frecuencias de vibración prácticamente no varían con la velocidad de rotación (tablas 4.20 a 4.27).
- Para los discos sin dientes como así también para los discos dentados, girando a velocidades de 600, 840 y 1080 rpm los esfuerzos máximos en un punto de la periferia se mantienen aproximadamente constantes (tabla. 4.20 a 4.27), es decir, estas velocidades no influyen en los esfuerzos, debido a que éstas se pueden considerar velocidades bajas.
- Al comparar las frecuencias naturales (disco estacionario) y las frecuencias de vibración (disco en rotación) se observa un leve aumento de las frecuencias de vibración para los tres primeros modos, no así en el cuarto modo.
- Los resultados de la modelación realizada con el software Pro/Engineer se comparó con los resultados de una experiencia realizada en sierras circulares de los autores Rios y otros (1999). En este caso, se hizo solo con el disco con dientes de ³/₄ de periferia con diámetros exteriores de 184, y 350 (mm), observándose valores cercanos en el rango de frecuencias de 2874.59 a 9607.47 Hz, 852.47 a 2679.36 Hz,

respectivamente, (tablas 4.23 y 4.27) Las diferencias que se encontraron en las frecuencias de vibración del modelo se deben a que la experiencia del trabajo citado se realizó en una sierra completamente dentada.

BIBLIOGRAFÍA

- Thomson, W., "Teoria Da Vibração com aplições", Ed: Interciência Ltda., Brasil, 1973.
- Sánchez, J., "Manual básico de Pro/Engineer Wildfire" Universidad Pública de Navarra, España 2004.
- Contreras, M., "Estudio teórico, experimental y simulación mediante software, sobre el ruido de sierras circulares girando en vació considerando la variación de parámetros cinemáticos y geométricos". Universidad Austral de Chile, Valdivia, 1998.
- Borési, Arthur. "Ingenieria Mecánica, Dinámica" Ed: Thomson Learning. 2001.
- Toogood, R. "Pro/Mechanica Tutorial Structure" Ed: Schroff Development Corporation. 2001.
- Kuang-Hua, C "Pro/Mechanica Motion, Mechanism Design and Analysis"
 Ed. Schroff Development Corporation. 2001.
- Anderson, B., Kay. Karen, Salego, Schweiger N, "Pro/Mechanica. Using Structure with Pro/Engineer" Ed: John Lanyi, USA, 1999
- Enright, C., Levelle, T., Wiebonski. C., ""Pro/Mechanica. Using Motion with Pro/Engineer" Ed: John Lanyi, USA, 1999
- PTC, "Fundamentals of Drawing", Training Guide, USA, 2000.
- Martínez, D. "Implementación del Software Pro/Engineer en dibujo de ingeniería y diseño mecánico" Tesis, Universidad Austral de chile, Valdivia 2004.
- Porra, H. "Modelado dinámico bajo la condición de desbalanceo" Tesis, Universidad Austral de chile, Valdivia 2004.
- Díaz, J. "Mecánica de la madera" Tesis, Universidad Austral de chile, Valdivia 1986.
- Pintor, J. "Elementos de máquinas y vibraciones" Universidad Pública de Navarra, España 2001.
- Jouglard, C. "Introducción al método de elementos finitos. Conceptos de mecánica de los sólidos" Universidad Tecnología nacional buenos aires.
 , Argentina 2002.

- Araya, P. "Estudio teórico y practico sobre fuentes de ruido y vibraciones presentes en sierras circulares girando en vació, alterando parámetros físicos y geométricos". Universidad Austral de chile, Valdivia 1998.
- Palomino, E. "La medición y el análisis de vibraciones en el diagnóstico de máquinas rotatorias" Ed: Centro de estudios innovación y mantenimiento. Cuba 1997.
- Rios, R., Perez, Y. Poblete, V., y Arenas, J. (1999) "Obtención experimental de frecuencias naturales en sierras circulares", Información Tecnológica, Vol 10, Nº 2.

ANEXO 1 MECÁNICA DE LA MADERA

		Tabla Propiedades mec: Luma	inicas		
Free Presided	Lutial	Estado	verde	Estado seco	(H=12 %)
rubtenau	TRUTTO	Media	Desviación Estándar	Media	Desviación Estándar
 Flexión Estática Tensión limite de proporción. Módulo de Rotura. Módulo de elasticidad. 	<u>Kg</u> cm²	800.0 1150,0 160,0	×	650,0 1300,0 210,0	×
 Flexión Dinámica (Tenacidad) Resistencia rotura Tangencial Resistencia rotura Radial. 	N cm.	×	×	×	×
 Compresión Paralela. Tensión Límite de Proporción Tensión Máxima. Modulo de elasticidad. 	Kg cm²	397,0 496,0 214,8	×	685,0 786,0 273,2	×
Compresión Normal • Tensión Límite de Proporción • Tensión Máxima	<u>Kg</u> cm²	230,0	×	200,0	*
* (Valores no calculados)					